Vibrations of Raised Access Floors

Hal Amick, Michael Gendreau and Colin G. Gordon

Colin Gordon & Associates

Presented at the First Pan-American/Iberian Meeting on Acoustics; 144th Meeting of the Acoustical Society of America, 2-6 December 2002, Cancun, Mexico

What is Raised Access Flooring?

- Raised Access Flooring (RAF) is a flooring *system* used in laboratories, cleanrooms, computer rooms, and offices.
- Walking surface consists of 24" x 24" (600mm x 600mm) metal tiles.
- Various surfaces available, may be perforated
- Tiles are supported on network of pedestals

Components of Access Flooring

Hal Amick, Michael Gendreau and Colin G. Gordon, "Vibrations of Raised Access Floors," Presented at the First Pan-American/Iberian Meeting on Acoustics; 144th Meeting of the Acoustical Society of America, 2-6 December 2002, Cancun, Mexico

Why is Access Flooring Used?

- Allows for piping, ducting, and wiring to run beneath the floor. Reduces clutter.
- Allows through-the-floor air flow and provides underfloor plenum path for return
- Modular
- Removable, easily reconfigured

Vibration Characteristics of RAF

- Generally a more severe vibration environment
- Chief concern is vibration from people walking
- Vertical Generally governed by vertical performance of floor beneath it; doesn't propagate far
- Horizontal Governed by horizontal dynamic characteristics of floor system; can be severe; can propagate a great distance

Nature of Study

- Combines the results of many studies over a dozen years, involving laboratory and in-situ experiments, as well as finite element modeling
- Both swept-sine and walker excitation
- Three papers in preparation
 - Basic properties and response to sinusoidal loading
 - Response to impulsive loading, including walkers
 - Methods to improve performance
- This presentation focuses on the first, with a little discussion of response to walkers

Test Configurations (for this presentation)

- Laboratory
 - 10' x 10' (~ 3m x 3m) stand-alone floor
 - Several bracing configurations
 - Swept sinusoidal and walker excitation
- In-situ
 - Large extent of floor in cleanroom under construction
 - Swept sinusoidal excitation

Laboratory Test Floor – 10' x 10'

Vertical Mobility

Horizontal Bracing Schemes

Meeting of the Acoustical Society of America, 2-6 December 2002, Cancun, Mexico

Idealized Horizontal Model

System Horizontal Mobility

Hal Amick, Michael Gendreau and Colin G. Gordon, "Vibrations of Raised Access Floors," Presented at the First Pan-American/Iberian Meeting on Acoustics; 144th Meeting of the Acoustical Society of America, 2-6 December 2002, Cancun, Mexico

Basic Properties of Test Floor

Configuration	Resonance Frequency (Hz)	Damping Ratio (%)	Total Stiffness (x10 ⁶ N/m)
Basic Floor	12.3	23	1.0
Corner Bolting Only	22.8	4	6.4
Bolted & Braced	47.8	8	11.5 – 26.3

Horizontal Response to Walker

Unbolted and Unbraced

(Seismic Bracing Only)

Bolted and Unbraced

(Seismic Bracing Only)

Bolted and Braced

(Dynamic Bracing)

Horizontal Response to Walker

Configuration	f _{max} , Hz	Peak-Hold, µm/s		Linear Avg., µm/s	
		@ 2 Hz	@ f_{max}	@ 2 Hz	(a) f_{max}
Basic Floor	16.5	112	199	63	63
Corner Bolting Only	22.5	112	705	44	250
Bolted and Braced	54	22	79	9	20

In-situ Floor

- Floor components similar to those of lab test floor, same height
- Large, "ballroom style" cleanroom
- No walls, equipment, etc.
- Exciter placed near center of open area
- Examined drive point properties, propagation away from exciter
- Studied coupled motion perpendicular to force

Drive Point Response

Hal Amick, Michael Gendreau and Colin G. Gordon, "Vibrations of Raised Access Floors," Presented at the First Pan-American/Iberian Meeting on Acoustics; 144th Meeting of the Acoustical Society of America, 2-6 December 2002, Cancun, Mexico

Basic Properties All Floors in Study

Floor	Configuration	Resonance Frequency (Hz)	Damping Ratio (%)	Total Stiffness (x10 ⁶ N/m)
In-situ	Basic Floor	35.5	12	18.0
5x5	Basic Floor	12.3	23	1.0
	Corner Bolting Only	22.8	4	6.4
	Bolted & Braced	47.8	8	11.5 – 26.3

Propagation (along line perpendicular to force – Path A)

Hal Amick, Michael Gendreau and Colin G. Gordon, "Vibrations of Raised Access Floors," Presented at the First Pan-American/Iberian Meeting on Acoustics; 144th Meeting of the Acoustical Society of America, 2-6 December 2002, Cancun, Mexico

Propagation (along line of force – Path B)

Hal Amick, Michael Gendreau and Colin G. Gordon, "Vibrations of Raised Access Floors," Presented at the First Pan-American/Iberian Meeting on Acoustics; 144th Meeting of the Acoustical Society of America, 2-6 December 2002, Cancun, Mexico

Effect of Floor's Extent

- Resonance frequency increases w.r.t. plain floor
- Damping increases
- Gradient improves
- Stiffness increases
 - More tiles activate more pedestals
 - Edge effect?
 - "Tighter"?

A Few Thoughts on Remediation

- Generally involves stiffening
- Stiffening is more effective with bolting
- Stiffening schemes ...
 - Stiffeners beneath walker paths
 - Stiffeners beneath equipment
 - Creation of "islands" using isolation breaks

Conclusions

- Access floors are ...
 - highly nonlinear
 - softer in horizontal direction
- Bracing, corner bolting and extent affect ...
 - Damping and stiffness
 - Amplitude
 - Propagation
- Local stiffening reduces amplitude