Vibration sensitivity of optical microscopes in the healthcare setting

Hal Amick, PhD, PE Michael Gendreau, INCE.Bd.Cert., Member

Colin Gordon & Associates

Paper 4aNS6 21 May 2009

Overview

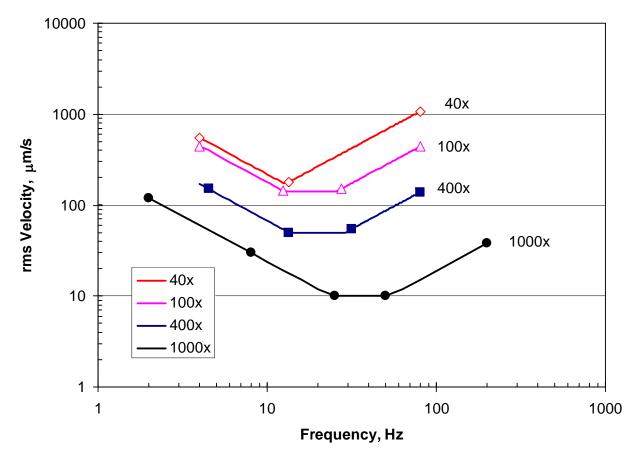
- Review of current healthcare facility vibration criteria
- Process of selecting criteria
- Process of selecting design parameters
- Case Study: Surgical microscope and its criteria
- Summary of criteria we use

Current Healthcare Vibration Criteria

- Surgical Suites
 - 100 μm/s (4000 μin/s), as defined by ISO and ANSI (rms one-third octave bands)
 - Misprinted as 200 μm/s (8000 μin/s) in AISC
 DG 11
- All other spaces require engineering judgment invoking criteria for other types of spaces

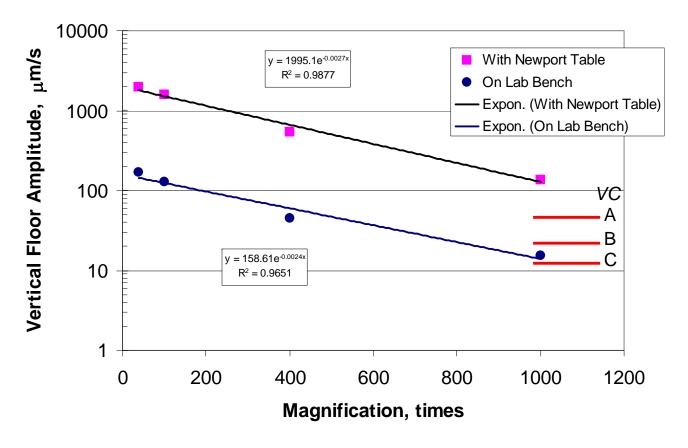
Process of Selecting Criteria (1)

- How is vibration a problem?
 - Human perception
 - Startle
 - Distraction
 - Sleep interference
 - Annoyance
 - Affects instrument performance
 - Degrades instrument performance
 - Introduces errors into data
 - Affects performance of person using instrument


Process of Selecting Criteria (2) Vibrations affecting People

- Startle and distraction are critical conditions to avoid in surgical suites.
 - ISO and ANSI standards (hence ASHRAE and AISC) use factor of safety (0.5) times human threshold of perception
- Sleep interference is an important issue in patient rooms.
 - Sleep environment is basis of ISO/ANSI recommendations for residential-nighttime limit of perception threshold.
- Annoyance can be avoided in other areas by use of "office" criterion from ISO, ANSI, ASHRAE, AISC.
 - Allows some perceptible vibration but avoids annoyance range.

Process of Selecting Criteria (3) Vibrations affecting Instruments


- Degrades instrument performance; may introduce errors into data. Most likely an issue with imaging (MRI and CT) and lab equipment (commonly microscopes).
 - Where possible, use instrument manufacturers' criteria (MRI, CT, etc.)
 - Criteria for bench microscopes can be based on Amick & Stead, ASHRAE, AISC
- Affects performance of person using instrument. Can lead to eye fatigue or worse (misreading or miscounting in lab tests; errors, nausea or annoyance with surgical microscopes)
 - Only criteria for surgical microscopes are from House & Randell, referenced in AISC; <u>discussed in later slides</u>

Benchtop Microscope Sensitivity, Omnidirectional (Amick & Stead)

H. Amick and M. Stead, "Vibration Sensitivity of a Laboratory Bench Microscope," Invited Paper, presented at the First Pan-American/Iberian Meeting on Acoustics; 144th Meeting of the Acoustical Society of America, 2-6 December 2002, Cancun, Mexico

Variation of Vibration Sensitivity with Magnification (Amick & Stead)

H. Amick and M. Stead, "Vibration Sensitivity of a Laboratory Bench Microscope," Invited Paper, presented at the First Pan-American/Iberian Meeting on Acoustics; 144th Meeting of the Acoustical Society of America, 2-6 December 2002, Cancun, Mexico

Process of Selecting Design Parameters

- Footfall is generally the critical design parameter
- Mechanical vibrations generally less than those due to footfall unless something is defective or unless floor is very stiff (e.g., Imaging and some MRI suites)
- Consider context in selecting footfall parameters

Context-dependent Footfall Parameters (1)

- Footfall forces are a function of pace rate
- Walker pace rate is a function of path and activity
- Path issues
 - Closed path or corridor: long path, no obstructions
 high walker rate (100 or 120 paces/min, we use 100)
 - Open path or ghost corridor: long path, some obstructions – medium walker rate (80 to 85 paces/min, we use 85)
 - Patient room, lab room, or between lab benches: short path, obstructions – slow walker rate (70 to 80 paces/min, we use 75)

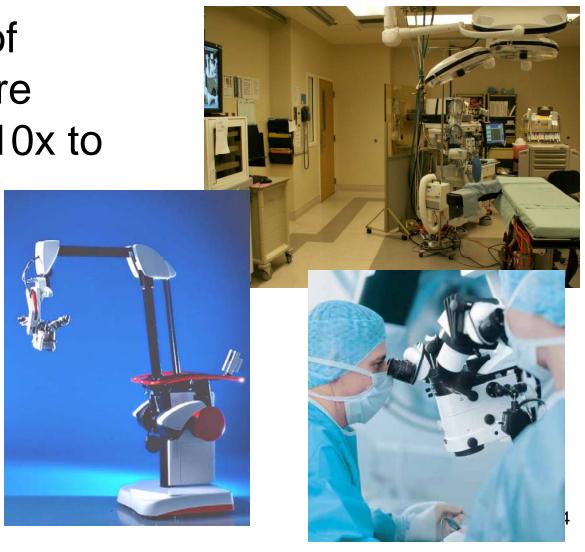
Context-dependent Footfall Parameters (2)

- Walker pace rate is a function of path and activity
- Activity issues
 - Critical care: staff often in a hurry in the public corridors – higher walker rate (consider 120 paces/min)
 - Non-critical care: staff are less frequently in "hurried" mode in public corridor (consider 100 paces/min)
 - Patient room: short path, obstructions hard to develop the gait associated with fast walker (70 to 80 paces/min, we use 75)

Context-dependent Footfall Parameters (3)

- Perform multiple analyses using appropriate walker forces applied at "soft" spots along walker path; base design on the condition creating maximum floor amplitudes
- Vibrations due to walker at 75 ppm in room may be more severe than at 100 ppm in nearby corridor

Case Study: The "established" criteria may need some rational modification


Microscopic Surgery

 Some types of surgery require microscopy (10x to

50x)

Ophthalmic

- Spine

Criteria?

ASHRAE

– "Microsurgery, eye surgery, neurosurgery", use 25 μm/s (1000 μin/s)

AISC / House & Randell

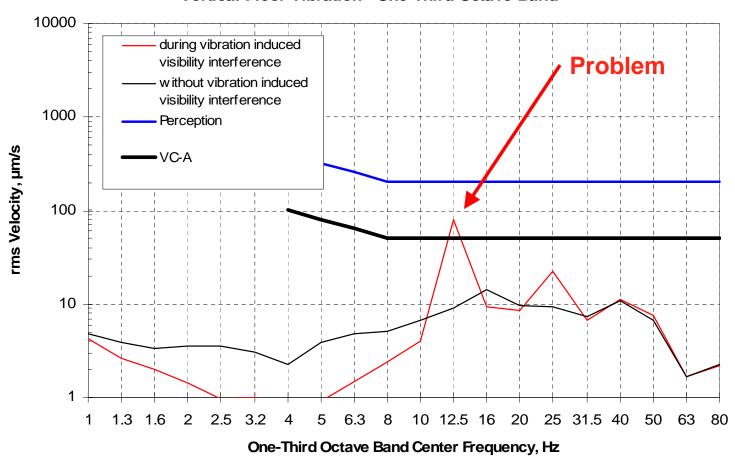
 Criterion of 50,000 / M μin/s, where M is magnification, at frequencies between 3 and 8 Hz, relaxed at higher frequencies; use 1250 μin/s (30 um/s) at 40x.

Amick & Stead

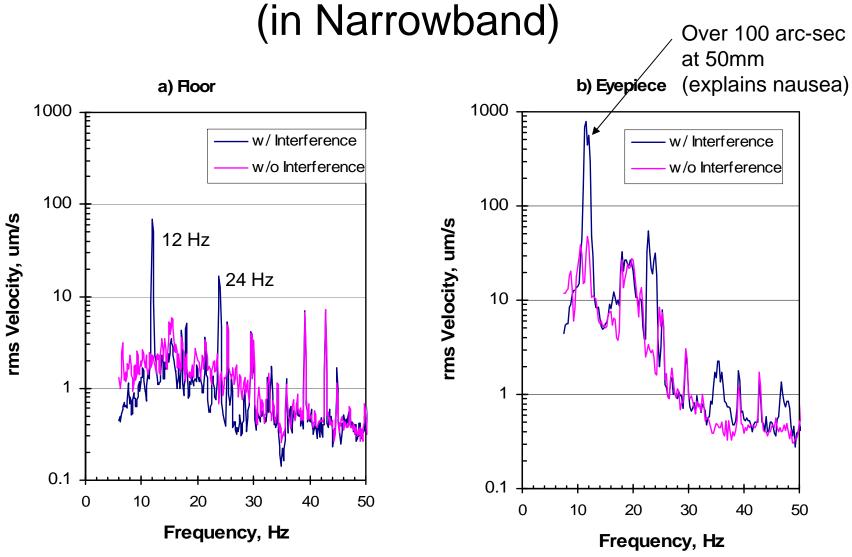
 Criterion of 100 um/s (4000 µin/s) for benchtop microscope of 40x to 100x

Case Study Problem

- Our client: A regional medical center with four operating rooms, two dedicated to microsurgery, using floor-mounted microscopes
 - One Leica, one Zeiss
- "Occasionally" there are vibrations which cause the image to jiggle

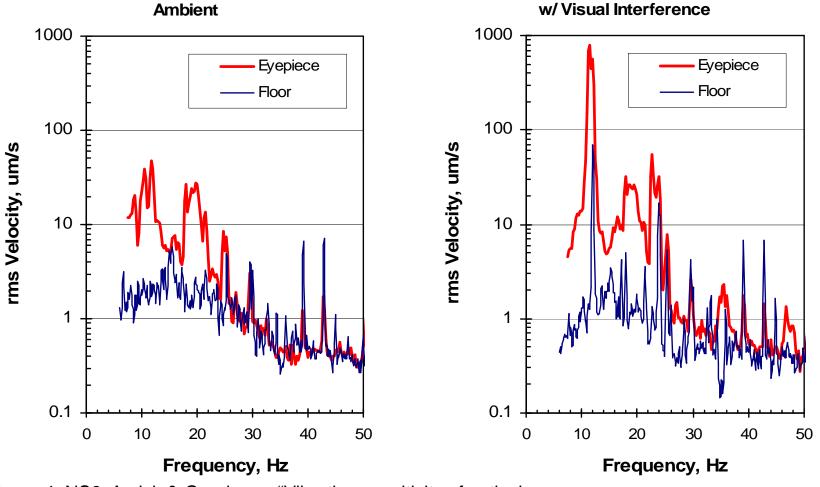

What we found ...

- Nice, stiff, concrete structure
- The "typical" ambient vibration environment in these OR's was below 50 um/s (2000 μin/s) (OR criterion is 100 μm/s)
- Footfall below 50 um/s (2000 µin/s)
- Steady-state has some acceptable jiggle
- "Problem"—high-amplitude jiggle—occurs a few minutes at a time, a few times a day
- One surgeon routinely experiences nausea during the "problem"


Routine Floor Measurements

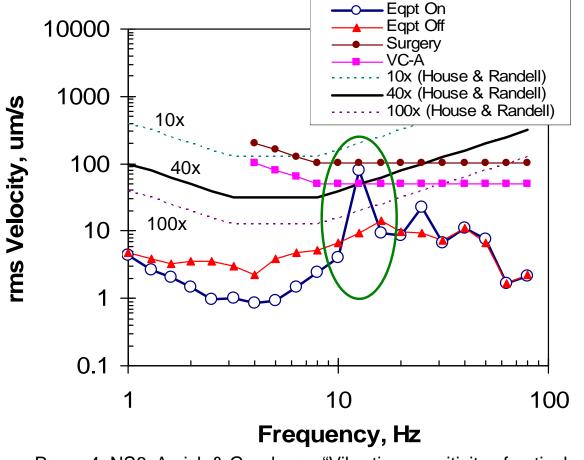
(why such a problem?)

Vertical Floor Vibration - One-Third Octave Band



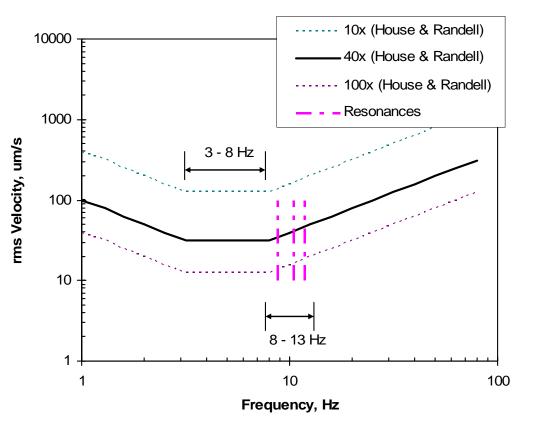
Compare Floor and Eyepiece

Compare Floor and Eyepiece


(in Narrowband)

The Problem ...

- Resonance amplification is a fact of life
 - 8 to12 Hz and 18 to 21 Hz, in this configuration
- Intermittent vibration from mechanical equipment (12.0 Hz and harmonics) <u>only</u> <u>slightly</u> exceeded VC-A
- Improve the vibration isolation on the mechanical equipment
- Was VC-A adequate?


What Criterion is Adequate?

Paper 4aNS6: Amick & Gendreau, "Vibration sensitivity of optical microscopes in the healthcare setting", 157th Meeting ASA, Portland, 2009

- Surgery criterion <u>not</u> adequate
- VC-A and House & Randell 40x are adequate
- Consider
 extending H&R
 "dip" to the right
 or removing
 relaxation

Proposed Modification to House & Randell

- "Dip" in H&R criterion did not correspond to observed resonances
- Solution:
 - Slide dip to higher frequency
 - Treat as singlevelocity criterion, V=1250 / M (where M is magnification)

Paper 4aNS6: Amick & Gendreau, "Vibration sensitivity of optical microscopes in the healthcare setting", 157th Meeting ASA, Portland, 2009

Vibration Criteria for Hospitals (1)

Type of Space	Primary Factor	Criterion	Rationale
Surgical Suites	Human	100 μm/s (4000 μin/s)	This is defined by ISO and ANSI. The established threshold of human perception is 200 μ in/s (8000 μ in/s). Historically, the argument was that a factor of safety of 2 against perception avoided the risk of startling the surgeon. [Misprinted as 8000 μ in/s in AISC DG 11.Correct in ASHRAE]
Surgical Suites	40x Surgical Microscope *	30 μm/s (1250 μin/s)	AISC DG 11, based on research by House and Randell, validated by Gendreau
Surgical Suites	100x Surgical Microscope *	12.5 μm/s (500 μin/s) (VC-C)	AISC DG 11, based on research by House and Randell
Patient Rooms	Human	200 um/s (8000 µin/s)	This is not specifically defined by international standard (differing from the case for surgical suites), but is based upon the international standard for sleeping areas.

Vibration Criteria for Hospitals (2)

Type of Space	Primary Factor	Criterion	Rationale
General Labs	Instrument	50 μm/s (2000 μin/s) (VC-A)	This is a consensus standard from a wide variety of sources, including ASHRAE, AISC, IEST, and NIH for generic laboratory space with microscopes up to 400x.
General Labs	Instrument	100 μm/s (4000 μin/s)	This is a relaxed criterion for "non-critical" laboratories with microscopes of 100x or less. Used by many universities for teaching labs (i.e., labs not used for research)
Imaging Labs (MRI)	Instrument	12.5 μm/s (500 μin/s) (VC-C)	Imaging systems vary widely in their sensitivity. The 500 µin/s criterion (approximately) is required to meet the needs of a few of the available systems. By eliminating those from consideration, the criterion can be relaxed.

References

- **AISC DG 11:** Murray, Thomas M., David E. Allen, and Eric E. Ungar (1997), "Floor Vibrations Due to Human Activity," *Steel Design Guide Series 11*, American Institute of Steel Construction, 69 pp.
- Amick and Stead: H. Amick and M. Stead, "Vibration Sensitivity of a Laboratory Bench Microscope," Invited Paper, presented at the First Pan-American/Iberian Meeting on Acoustics; 144th Meeting of the Acoustical Society of America, 2-6 December 2002, Cancun, Mexico
- Amick and Stead: H. Amick and M. Stead, "Vibration Sensitivity of a Laboratory Bench Microscope," Sound & Vibration, v. 41, No. 2, pp. 10-17 (February 2007).
- **ASHRAE:** ASHRAE (2003). ASHRAE Handbook: Applications, Chapter 47 (Fig. 39 & Table 40), "Sound and Vibration Control," 50 pp.
- House and Randell: House, M. H., and Randell, R. (1987). "Some Measurements of Acceptable Levels of Vibration in Scientific, Medical and Ophthalmic Microscopes," *Proc. SPIE Conf. Vib. Con. Opt. and Metrology 732*, pp. 74-80 [V = 1250 / M um/s, where M is magnification]
- **IEST:** Institute of Environmental Sciences and Technology, "Considerations in Cleanroom Design," RP-CC012.2, 2005.
- **ISO:** International Standards Organization, ISO 2631 "Mechanical vibration and shock Evaluation of human exposure to whole-body vibration, Parts 1 and 2." Part 1 was updated 15 July 1997 and Part 2 was updated 1 April 2003.
- NIH: National Institutes of Health, Office of Research Fachilities (Spring 2003). NIH Design Policy and Guidelines

Thank you

Questions?